fbpx
Open/Close Menu Venta y Distribución de Material Eléctrico de alta y media tensión

Es bien sabido que la mayoría de los sistemas eléctricos necesitan ser aterrizados y que esta práctica probablemente se inició en los primeros días de los experimentos eléctricos. Entonces, como ahora, la estática se descargaba por conexión a una placa que estaba en contacto con la masa general de la tierra. La práctica ha continuado y se ha desarrollado progresivamente, de modo que tales conexiones a tierra se encuentran en casi todos los puntos en el sistema eléctrico. Esto incluye la estación generadora, las líneas y los cables que distribuyen la energía eléctrica y los locales en los cuales se utiliza. La necesidad de esta conexión se considera sagrada en la legislación. Por ejemplo en el Reino Unido, la Electricity Supply Regulations 1988, cláusula 5 (1), exige que todos los sistemas (es decir Generación, Transmisión y Distribución) sean puestos a tierra en un punto. Esto no se extiende efectivamente a la instalación en el interior de locales y si bien es aún la medida más común aterrizar tales instalaciones, la norma (por ejemplo vía BS 7671:1992, Amendment 1, 1994, Requirements for Electrical Installations) acepta ciertas disposiciones no aterrizadas.

Aún cuando la puesta a tierra constituye una parte intrínseca del sistema eléctrico, permanece en general como un tema mal comprendido y a menudo se refiere a él como un «arte oscuro»- algunas veces incluso por bien calificados ingenieros. En los años recientes ha habido rápidos desarrollos en el modelamiento de sistemas de puesta a tierra, tanto a frecuencia de potencia como superiores, principalmente facilitados por los nuevos recursos y procedimientos computacionales. Esto ha incrementado nuestra comprensión del tema, al mismo tiempo que la actividad de diseño ha llegado a ser significativamente más difícil y las nuevas normas están requiriendo un diseño seguro y más detallado.

Surge así una oportunidad para explicar más claramente los conceptos de puesta a tierra y una necesidad que esto se traspase a los diseñadores de sistemas de puesta a tierra y a los instaladores, de modo que pueda lograrse una mayor comprensión del tema.

Por puesta a tierra generalmente entendemos una conexión eléctrica a la masa general de la tierra, siendo esta última un volumen de suelo, roca etc., cuyas dimensiones son muy grandes en comparación al tamaño del sistema eléctrico que está siendo considerado.

Antes de exponer definiciones, es importante notar que en Europa se tiende a usar el término «earthing», mientras que en Norte América es más común el término «grounding». La definición de la IEEE de puesta a tierra es: «Tierra (sistema de tierra). Una conexión conductora, ya sea intencional o accidental, por medio de la cual un circuito eléctrico o equipo se conecta a la tierra o a algún cuerpo conductor de dimensión relativamente grande que cumple la función de la tierra».

Para uso dentro de Europa, el significado permanece si los términos generalmente aceptados se reemplazan como sigue:

«Tierra (sistema de tierra). Una conexión conductora, ya sea intencional o accidental, por medio de la cual un circuito eléctrico o equipo se conecta a la masa de la tierra o a algún cuerpo conductor de dimensiones relativamente grandes que cumple la misma función que la masa de la tierra».

Como se describe posteriormente, es posible operar un sistema eléctrico sin una tierra, entonces ¿por qué es tan común la práctica de poner a tierra los sistemas eléctricos?

Razones que más frecuentemente se citan para tener un sistema aterrizado:

Proporcionar una impedancia suficientemente baja para facilitar la operación satisfactoria de las protecciones en condiciones de falla.

  • Asegurar que seres vivos presentes en la vecindad de las subestaciones no queden expuestos a potenciales inseguros, en régimen permanente o en condiciones de falla.
  • Mantener los voltajes del sistema dentro de límites razonables bajo condiciones de falla (tales como descarga atmosférica, ondas de maniobra o contacto inadvertido con sistemas de voltaje mayor), y asegurar que no se excedan los voltajes de ruptura dieléctrica de las aislaciones.
  • Hábito y práctica.
  • En transformadores de potencia puede usarse aislación graduada.
  • Limitar el voltaje a tierra sobre materiales conductivos que circundan conductores o equipos eléctricos.

Otras razones citadas menos frecuentemente, incluyen:

  • Estabilizar los voltajes fase a tierra en líneas eléctricas bajo condiciones de régimen permanente, por ejemplo, disipando cargas electrostáticas que se han generado debido a nubes, polvo, agua, nieve, etc.
  • Una forma de monitorear la aislación del sistema de suministro de potencia. Para eliminar fallas a tierra con arco eléctrico persistente.
  • Para asegurar que una falla que se desarrolla entre los enrollados de alto y bajo voltaje de un transformador pueda ser manejada por la protección primaria.
  • Proporcionar una trayectoria alternativa para las corrientes inducidas y de tal modo minimizar el «ruido» eléctrico en cables.
  • Proporcionar una plataforma equipotencial sobre la cual pueda operar equipo electrónico.

Para desempeñarse adecuadamente cumpliendo cualquiera de las funciones anteriores, el sistema de tierra debe generalmente tener una baja impedancia, de modo que ya sea dispersando o recogiendo corriente desde el terreno, no se produzca un aumento de voltaje excesivo. Por supuesto en el interior de instalaciones es también necesaria una conexión a tierra, para asegurar la correcta operación del equipo -por ejemplo dispositivos electrónicos, donde puede ser necesaria una pantalla a tierra. Es esencial considerar la puesta a tierra en una instalación global como un sistema completo y, por lo tanto, diseñaría e instalarla correspondientemente.

La puesta a tierra de instalaciones eléctricas está relacionada en primer lugar con la seguridad. El sistema de puesta a tierra se diseña normalmente para cumplir dos funciones de seguridad. La primera es establecer conexiones equipotenciales. Toda estructura metálica conductiva expuesta que puede ser tocada por una persona, se conecta a través de conductores de conexión eléctrica. La mayoría de los equipos eléctricos se aloja en el interior de cubiertas metálicas y si un conductor energizado llega a entrar en contacto con éstas, la cubierta también quedará temporalmente energizada. La conexión eléctrica es para asegurar que, si tal falla ocurriese, entonces el potencial sobre todas las estructuras metálicas conductivas expuestas sea virtualmente el mismo. En otras palabras, la conexión eléctrica iguala el potencial en el interior del local, de modo que las diferencias de potencial resultantes son mínimas. De este modo, se crea una «plataforma» equipotencial.

Si una persona está en contacto simultáneamente con dos piezas diferentes de una estructura metálica expuesta, el conductor de conexión eléctrica debiera garantizar que la persona no reciba un choque eléctrico, haciendo que la diferencia de potencial entre los equipos sea insuficiente para que esto ocurra. El mismo principio se aplica en el interior de grandes subestaciones eléctricas, industrias y casas. En industrias, la conexión eléctrica de estructuras metálicas expuestas garantizará normalmente que una falla eléctrica a la carcasa de la máquina no generará una diferencia de potencial entre ella y la estructura metálica puesta a tierra en una máquina adyacente. En la casa, la conexión eléctrica garantiza que si ocurriese una falla a la cubierta metálica de una máquina lavadora u otro electrodoméstico, cualquier persona que estuviese tocando en el momento de falla simultáneamente uno de estos equipos y el estanque metálico, no experimentaría un choque eléctrico.

La segunda función de un sistema de puesta a tierra es garantizar que, en el evento de una falla a tierra, toda corriente de falla que se origine, pueda retornar a la fuente de una forma controlada. Por una forma controlada se entiende que la trayectoria de retorno está predeterminada, de tal modo que no ocurra daño al equipo o lesión a las personas. La conexión a tierra no es de capacidad infinita e impedancia nula. Sin embargo, la impedancia del sistema de tierra debiera ser lo bastante baja de modo que pueda fluir suficiente corriente de falla a tierra para que operen correctamente los dispositivos de protección, los cuales a su vez provocarán la operación de interruptores o fusibles para interrumpir el flujo de corriente. El diseñador de la protección calcula normalmente el valor requerido de impedancia a través de programas de análisis de fallas y este valor debe comunicarse a los responsables del diseño del sistema de puesta a tierra. Además, la elevación de potencial que experimentará el sistema de puesta a tierra mientras ocurre la falla, debiera ser limitada a un valor pre-establecido.

Estas son las funciones que el sistema de puesta a tierra debe cumplir, pero se requiere que se adapten a una amplia variedad de problemas diferentes. El primero es una falla convencional, es decir, la aparición de un deterioro en un cable o la ruptura eléctrica de la aislación fase a tierra en una parte de un equipo. El equipo puede estar en una subestación, una industria o la casa. Llamamos a ésta una falla de «frecuencia industrial», ya que la mayor parte de la energía disipada en la falla será a esta frecuencia (50/60 hz.).

En algunas instalaciones, tales como estaciones transmisoras de radio o televisión, locales donde se rectifica grandes cantidades de potencia o donde se opera bancos de condensadores, la energía estará disponible a frecuencias mayores que la normal. El sistema de puesta a tierra debe diseñarse especialmente para proporcionar una baja impedancia a estas frecuencias.

Muchas instalaciones eléctricas están propensas al riesgo de daño como resultado del impacto de un rayo y se requiere de arreglos especiales para reducir el riesgo involucrado. Un sistema de tierra adecuado es fundamental para esta providencia. Debido a que un impulso de rayo tiene una pendiente de subida escarpada y es una fuente de corrientes de alta frecuencia, nuevamente son necesarios diseños especiales de sistemas de tierra. Por ejemplo, las curvas en los conductores de tierra forman una pequeña inductancia, la cual es insignificante a la frecuencia de potencia, pero puede crear una alta impedancia a la corriente de rayo. Esto puede ser suficiente para que ocurra una descarga de retorno (flashover) y la corriente prefiera fluir a tierra por otros caminos diferentes de la ruta diseñada – posiblemente causando un daño significativo en el proceso.

El sistema de puesta a tierra se usa también como un medio para obtener condiciones seguras de trabajo durante algunas faenas de mantenimiento o construcción. Antes de iniciar cualquier trabajo, las plantas que estaban energizadas tienen que ser desconectadas y sus componentes previamente activos tienen que ser conectados a tierra. Esto permite que cualquier energía almacenada sea descargada en forma segura a tierra y ayuda a prevenir la aparición de voltajes peligrosos en el equipo en que se está trabajando (esto podría ocurrir de otra manera debido a inducción, error o falla en el sistema de potencia). En algunas instalaciones industriales, el sistema de puesta a tierra se solicita para descargar continuamente la formación de estática, y así prevenir un riesgo de fuego o explosión. Como ejemplos están las plantas manufactureras de papel o ambientes donde están presentes explosivos o elementos químicos volátiles.

Una concepción errada muy popular es que el sistema de puesta a tierra opera sólo durante condiciones de falla. En realidad, también durante la operación rutinaria cumple ciertos roles vitales. Por ejemplo, muchas alimentaciones de potencia incluyen ahora una conexión a tierra, a través de la cual se dispersan al terreno corrientes residuales y corrientes armónicas. La creencia sostenida previamente de que estas corrientes podían ser conducidas a tierra sin consecuencias adversas, se reconoce ahora como falsa. Las corrientes que fluyen a tierra, de alguna manera deben retornar a la fuente, formando un bucle cerrado. Estos bucles crearán diferencias de potencial que, aunque pequeñas, causan ruido, zumbido, y posibles daños a equipo electrónico. Este proceso, junto con la creciente cantidad de corrientes armónicas que se inyecta en la red de alimentación pública, es una causa que genera crecientes problemas en la calidad de la potencia. Algunos equipos disponen de pantallas puestas a tierra que operan continuamente para reducir el campo producido fuera de su gabinete o para reducir el impacto de campos generados por la propia operación del equipo.

En los años recientes, varios factores han hecho poner atención en los sistemas de puesta a tierra. Uno es el creciente empleo de cables subterráneos con pantalla plástica, otro el uso de tuberías de agua plásticas. Las tuberías de agua plásticas han tenido un impacto particular en el caso de instalaciones residenciales, afectando las instalaciones de puesta a tierra proporcionadas por las antiguas tuberías metálicas. Se usan ahora cables con pantalla plástica, en lugar de los anteriores tipos que tenían una pantalla de plomo y armadura de acero, en contacto directo con el suelo. Esto ha tenido un efecto perjudicial en la eficiencia total de los sistemas de puesta a tierra y ha impuesto más responsabilidad en los restantes componentes del sistema de puesta a tierra, incluyendo los electrodos de tierra instalados en todas las subestaciones eléctricas. Ahora es más importante que antes asegurar que el sistema de electrodos esté correctamente diseñado, instalado y mantenido.

Claramente, el sistema de puesta a tierra realiza un amplio rango de funciones similares a través de todas las etapas de suministro de electricidad, es decir, en la central generadora, en las subestaciones eléctricas (en las cuales se modifica el voltaje de alimentación), hasta la instalación eléctrica residencial, oficinas e industrias. El cobre es el material más ampliamente utilizado para estos sistemas de puesta a tierra. Sus propiedades muy bien probadas y ensayadas, de relativamente baja resistencia eléctrica, maleabilidad y buena resistencia a la corrosión, aseguran que es y será el material preferido por muchos años.

En Relsamex tenemos todo lo necesario para tus puestas en tierra, energiza tus proyectos de manera segura y efectiva.

Cotiza con los mejores.

Relsamex, energizando tus proyectos.

 

Fuente: analfatecnicos.com

© 2020 RELSAMEX - Todos los Derechos Reservados
Diseño y Desarrollo Web por ADWEB design, una empresa de ADWEB Solutions.